На Что Делиться 47

Нахождение НОД и НОК чисел

Онлайн-калькулятор «Нахождение НОД и НОК чисел«. Наш калькулятор поможет вам найти наибольший общий делить (НОД) и наименьшее общее кратное (НОК) чисел. Особенностью данного калькулятора является то, что он может находить НОК и НОД не только двух чисел, но и трех или четырех чисел. Введите натуральные числа и нажмите кнопку «Вычислить» и наш калькулятор не просто выдаст ответ, но и представит подробное решение, где последовательно будет изложен порядок нахождения НОД и НОК чисел.

Как определить делится ли число на 4 : две последние цифры в числе должны делиться на 4 ( 00 принимается за 100 ). Пример: 87524 делится на 4 , так как последние цифры 24 делятся 4; 6500 делится на 4 , так как последние цифры – 00 , а 100 делится на 4; 59431 не делится на 4 , так как 31 не делится на 4 без остатка.

Как определить делится ли число на 6 : число должно делится одновременно на 2 и на 3 , согласно вышеописанным признакам. Пример: 81 не делится на 6 , так как оно делится на 3 , но не делится на 2; 100 не делится на 6 , так как оно делится на 2 , но не делится на 3; 72 делится на 6 , так как оно делится и на 2 , и на 3 .

Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного попроще – Число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно 17(например, 32952→3295-10=3285→328-25=303→30-15=15. поскольку 15 не делится на 17, то и 32952 не делится на 17)

Признак делимости на 10 n -1
Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп, считая их n-значными числами. Эта сумма делится на 10 n — 1 тогда и только тогда, когда само число делится на 10 n — 1.

Признак делимости на 10 n +1
Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп с переменными знаками, считая их n-числами. Эта сумма делится на 10 n + 1 тогда и только тогда, когда само число делится на 10 n + 1.

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 — 8 + 2 — 9 + 1 — 9 = -22 делится на 11) — следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Признак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

если (X-29Y) делится на 97, то и N делится на 97.
Пример: N=1261. X=126, Y=1, X-29Y=126-29 · 1=97 — делится на 97, значит и 1261 делится на 97. Действительно, 1261:97=13.

Положим наши находки (признаки делимости) в математическую корзинку.
Вроде бы наша прогулка подошла к концу. Нет и ещё раз нет! Мы подошли к самому интересному! Давайте присядем, передохнём и посмотрим на наши творения.
Внимательно взглянув на таблицу 2 , замечаем: для простых чисел, оканчивающихся на единицу ( P = 11, 31, 41, 61, 71 ), число k одно и то же ( k = 1 ). Что это, случайность? Пока не ясно. Вновь глянем на таблицу 2. А если простые числа кончаются на 3 ( P = 13, 23, 43, 53, 73, 83 ), то число k = -3 . Если же простые числа кончаются на 7 ( P = 17, 37, 47, 67, 97 ), то k = 3 . Наконец, для простых чисел с девяткой в конце ( P = 19, 29, 59, 79, 89 ), число k = -1 .
Пожалуй, это закономерность. Разберёмся в этом подробнее. Продолжим нашу прогулку по математической тропинке.

Для всех P, кончающихся на 1 (P = 11, 31, 41, 61, 71) имеем P = 10n + 1, где n – число десятков.
Если k = 1, то из (3) имеем m = (1-kP)/10 = ( 1-1(10n+1) )/10 = -n .

И наоборот, если m = -n, то из (2) k = (1-10m)/P = (1-10(-n))/(10n+1) = 1 . Получаем теорему.

ТЕОРЕМА 2 (для P = 11, 31, 41, 61, 71, …):
Пусть P – простое число с цифрой 1 на конце (т.е. P = 10n+1), n – число десятков числа P, N = 10x + y. Тогда если (x — ny) делится на P, то и N делится на P.
Доказательство:

Если (x — ny) делится на P, то x — ny = sP и x = sP + ny. Тогда N = 10x+y = 10( sP+ny)+y = 10sP+10ny+y = 10sP+y(10n+1) = 10sP+yP = P(10s+y) делится на P.

Положим в корзинку формулы (1) , (2) и (3) . Они нам пригодятся в дальнейшем.
Начало нашей прогулки очень удачное. Теперь можно сформулировать теорему.

ТЕОРЕМА 1:
Пусть (x + my) делится на P, m = (1-kP)/10 , N = 10x + y. Тогда N делится на P.

Доказательство:

Если (x + my) делится на P, то x + my = sP и x = sP – my = sP – (1-kP)y/10 . Тогда
N = 10x+y = 10( sP– (1-kP) y/10 )+y = 10sP–(1–kP)y+y = 10sP+kPy = P(10s+ky) делится на P.

Теорема 1 – очень важна! Положим её в корзинку и продолжим наш путь.
Пусть число m удовлетворяет условию (3) .
Для ряда простых чисел P, зададим значения k и по (3) вычислим m. Вычисления занесём в таблицу 1 :

Для всех P, кончающихся на 7 (P = 17, 37, 47, 67, 97) имеем P = 10n + 7, где n – число десятков.
Если k = 3, то из (3) имеем m = (1-kP)/10 = ( 1-3(10n+7) )/10 = (-20-30n)/10 = -(3n + 2).
И наоборот, если m = -(3n+2), то из (2) k = (1-10m)/P = ( 1+10 (3n+2) )/(10n+7) =
= (30n+21)/(10n+7) = 3(10n+7)/(10n+7) = 3. Получаем теорему.

ТЕОРЕМА 4 (для P = 7, 17, 37, 47, 67, 97, …):
Пусть P – простое число с цифрой 7 на конце (т.е. P = 10n+7), n – число десятков числа P, N = 10x + y. Тогда если (x — (3n+2)y) делится на P, то и N делится на P.
Доказательство:

Если (x — (3n+2)y) делится на P, то x — (3n+2)y = sP и x = sP + (3n+2)y. Тогда N = 10x+y = = 10( sP+ (3n+2)y)+y = 10sP+30ny+20y+y = 10sP+3y(10n+7) = 10sP+3yP = P(10s+3y) делится на P.

Есть особая прелесть в прогулках по летнему лесу. Казалось бы, всё с детства знакомо: каждый листочек, каждая травинка, каждая песчинка, комочек чёрной земли, перепревший прошлогодний листик. Но вдруг, идя по лесной тропинке или продираясь через лесные дебри, встречаешь что-то совсем неожиданное. Вон трудяга-муравей тащит сухую иголку неведомо куда. Отфильтрованный листвой солнечный лучик больно кольнул в глаз. Воздух наполнил лёгкие, чувствуешь неведомые ранее ароматы. Прислушаешься, и в лесных шорохах, вздохах и свистах слышны новые аккорды.

Давайте и мы пройдёмся по знакомой математической тропинке – по ряду натуральных чисел, для начала не превышающих 100. Возьмём с собой математическую корзинку, мы будем складывать в неё самое интересное и нужное. На пути встречаются экзотические числа 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, …, 89, 97. Это простые числа. Они загадочны и таинственны сами по себе. Они хранят в себе много неведомого. Мы приоткроем одну из них. Выясним признаки делимости на все (!) двузначные простые числа.

Вам будет интересно ==>  Кадровые приказы 2023

Пусть N – исходное натуральное число,
x – число N без последней цифры (x – натуральное число),
y – последняя цифра числа N (y = 0,1,2,3,4,5,6,7,8,9),
P – простое число;
m, k, n, s – целые числа.

Тогда N = 10x + y. (1)

ТЕОРЕМА 3 (для P = 3, 13, 23, 43, 53, 73, 83, …):
Пусть P – простое число с цифрой 3 на конце (т.е. P = 10n+3), n – число десятков числа P, N = 10x + y. Тогда если (x + (3n+1)y) делится на P, то и N делится на P.
Доказательство:

Если (x + (3n+1)y) делится на P, то x + (3n+1)y = sP и x = sP — (3n+1)y. Тогда N = 10x+y = 10( sP- (3n+1)y)+y = 10sP-30ny-10y+y = 10sP-3y(10n+3) = 10sP-3yP = P(10s-3y) делится на P.

  1. Записать число: 212.
  2. Проверить на четность: 212 — четное, т. к. последний разряд заканчивается на двойку.
  3. Число, образованное из двух последних цифр: 12.
  4. Вывод: 212 можно без остатка поделить на 4, поскольку значение является четным, а две последние элементы разрядной сетки делятся на четверку.

Деление — арифметическая операция, позволяющая найти один из множителей при их произведении. Иными словами, деление является обратным действием относительно умножения. Записывается оно следующим образом: U/T=V. Далее следует подробно разобрать каждый из элементов операции:

Исходя из методики, можно сформулировать такое свойство, позволяющее узнать, делится ли исходное значение на 4: величина на четверку делится в том случае, когда является четной и число, образованное разрядами десятков и единиц, можно поделить на это значение без остатка.

При упрощении выражений необходимо знать некоторые особенности или правила с примерами. Признаки делимости на 4 вызывают сложности у учеников в 5 классе. Для изучения этой темы специалисты предлагают использовать научный подход, который основан на психофизиологических особенностях работы головного мозга. Он включает ознакомление с основными элементами теории и алгоритмом.

Если выполнить операцию «212/4» при помощи калькулятора, то можно получить целочисленное значение, которое равно 53. Чтобы понять принцип действия алгоритма, нужно придумать любое число, и попытаться поделить его на четверку. Например, нужно разделить 4325624 на 4. Для этого требуется сначала выяснить кратность искомого числа четырем. Решать задачу нужно таким образом:

Признак делимости чисел на 15 очень часто нужен для решения контрольных и экзаменационных заданий. Например, зачастую в базовом уровне ЕГЭ по математике встречаются задачи, основанные на понимании именно этой темы. Рассмотрим некоторые их решения на практике.

Итак, нам нужно узнать, можно ли разделить данное число на 15. Для этого рассмотрим его подробнее. Число 15 можно представить, как произведение 3 и 5. Значит, чтобы число делилось на 15, оно должно быть кратно одновременно 3 и 5. Это и есть признак делимости на 15. В дальнейшем мы рассмотрим его подробнее и сформулируем точнее.

Итак, теперь мы можем полноценно сформулировать признак делимости на 15: число делится на 15 тогда, когда сумма его цифр кратна 3, а последней цифрой является или 5, или 0. Важно отметить, что оба этих условия должны выполняться одновременно. Иначе мы получим число кратное не 15, а только 3 или 5.

Зачастую при решении задач нужно узнать, делится ли то или иное число на заданную цифру без остатка. Но каждый раз делить его очень долго. К тому же велика вероятность допустить ошибку в расчетах и уйти от правильного ответа. Для того чтобы избежать этой проблемы, были найдены признаки делимости на основные простые или однозначные числа: 2, 3, 9, 11. Но что делать, если нужно произвести деление на другую, большую цифру? Например, как рассчитать признак делимости на 15? Ответ на этот вопрос мы постараемся найти в данной статье.

Если число не является простым, то его можно разложить на множители. Например, 33 – это произведение 3 и 11, а 45 – 9 и 5. Существует свойство, согласно которому число делится на данное без остатка в случае, если его можно разделить и на тот, и на другой множитель. Это значит, что любое большое число можно представить в виде простых, и уже исходя из них, формулировать признак делимости.

На Что Делиться 47

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 — 8 + 2 — 9 + 1 — 9 = -22 делится на 11) — следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Признак делимости на 99
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.

Признак делимости на 10 n -1
Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп, считая их n-значными числами. Эта сумма делится на 10 n — 1 тогда и только тогда, когда само число делится на 10 n — 1.

Призннак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного попроще – Число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно 17(например, 32952→3295-10=3285→328-25=303→30-15=15. поскольку 15 не делится на 17, то и 32952 не делится на 17)

Признаки делимости чисел

Признаки делимости чисел– это правила, позволяющие не производя деления сравнительно быстро выяснить, делится ли это число на заданное без остатка.
Некоторые из признаков делимости довольно просты, некоторые сложнее. На этой странице Вы найдете как признаки делимости простых чисел, таких как, например, 2, 3, 5, 7, 11, так и признаки делимости составных чисел, таких, как 6 или 12.
Надеюсь, данная информация будет Вам полезной.
Приятного обучения!

Признак делимости на 8 звучит так: если последние 3 цифры образуют число, делящееся на 8, или это 000, то заданное число делится на 8.
Числа 1000 или 1088 делятся на 8: первое оканчивается на 000, у второго 88:8=11 (делится на 8 без остатка).
А вот числа 1100 или 4757 не делятся на 8,так как числа 100 и 757 не делятся без остатка на 8.

Данные признаки делимости я объединил потому, что их можно описать одинаково: число делится на разрядную единицу, если количество нулей на конце числа больше или равно количеству нулей у заданной разрядной единицы.
Другими словами, например, мы имеем такие числа: 654, 46400, 867000, 645. из них все делятся на 1; 46400 и 867000 делятся еще и на 100; и лишь одно из них — 867000 делится на 1000.
Любые числа, у которых количество нулей на конце меньше чем у разрядной единицы, не делятся на эту разрядную единицу, например 60030 и 793 не делятся 100.

Вам будет интересно ==>  Статьи 228 часть 3 что грозит ф

Этот признак делимости будет посложнее. Если последние 2 цифры числа образуют число, делящееся на 4 или это 00, то и число делится на 4, в противном случае данное число не делится на 4 без остатка.
Например: 100 и 364 делятся на 4, потому что в первом случае число оканчивается на 00, а во втором на 64, которое в свою очередь делится на 4 без остатка (64:4=16)
Числа 357 и 886 не делятся на 4, потому что ни 57 ни 86 на 4 не делятся, а значит не соответствуют данному признаку делимости.

Перед нами составное число 6, которое является произведением чисел 2 и 3. Поэтому признак делимости на 6 тоже является составным: для того, чтобы число делилось на 6, оно должно соответствовать двум признакам делимости одновременно: признаку делимости на 2 и признаку делимости на 3. При этом обратите внимание, что такое составное число как 4 имеет индивидуальный признак делимости, ведь оно является призведением числа 2 на само себя. Но вернемся к признаку делимости на 6.
Числа 138 и 474 чётные и отвечают признакам делимости на 3 (1+3+8=12, 12:3=4 и 4+7+4=15, 15:3=5), а значит они делятся на 6. Зато 123 и 447 хоть и делятся на 3 (1+2+3=6, 6:3=2 и 4+4+7=15, 15:3=5), но они нечётные, а значит не соответсвуют признаку делимости на 2, а следовательно и не соответсвуют признаку делимости на 6.

Как узнать, делится ли число без остатка на 7 и 8

Когда я учился в школе и решал задачки по математике, очень часто хотелось узнать, делится одно число на другое (предполагается, что делитель меньше 10) или нет без остатка. Обычно при решении таких примеров учителя запрещали пользоваться калькулятором, а вычисления в «столбик» были относительно длительны. Я нередко ошибался и получал несуразные результаты. А знание того, что число заведомо разделится без остатка, было бы здесь совсем не лишним.

Ну и осталось у нас число 7. Раньше я думал, что для него признак делимости найти невозможно. Но оказалось, это не так. Случайно я заметил, что без остатка на 7 делится число 1001 (1001: 7 = 143). Соответственно, на 7 будут делиться 2002, 3002,7007 , если к какому-либо трехзначному числу, кратному семи, прибавить что-то подобное, то оно тоже будет делиться на 7.

Значит, чтобы узнать, что число делится на 7, нужно от трехзначного числа, образованного тремя последними цифрами исходного, отнять число тысяч. Если полученное число делится на 7, то и исходное будет делиться на 7. Например, 3752. Здесь трехзначное число, образованное последними цифрами — 752, число тысяч — 3. Вычитаем: 752 — 3 = 749. Таким образом, задача свелась к отысканию делимости трехзначного числа 749.

Далее. Число без остатка делится на 4, если делится на 4 число из двух последних его цифр. Число 100 делится без остатка на 4, и, следовательно, сколько сотен ни добавляй, оно все равно будет делиться на 4. Если двухзначное число выходит за таблицу умножения, то от него следует отнять 40 и узнать, делится ли полученное число на 4.

Начнем с числа 8 — это проще. Число 100 не делится без остатка на 8 (100: 8 = 12,5). И, следовательно, такой финт, как с четверкой, не пройдет. Например, 332. Число из двух последних цифр делится на 8, но 332: 8 = 41,5. Однако на 8 делится без остатка число 1000 (1000: 8 = 125). Таким образом, если трехзначное число, например 256, делится на 8, то к нему можно прибавить тысячу (которая тоже делится на 8), и оно по-прежнему будет делиться на 8.

6 n + 10 n + 14 = ( 5 + 1 ) n + 10 n + 14 = = ( C n 0 · 5 n + C n 1 · 5 n — 1 · 1 + ⋯ + C n n — 2 · 5 2 · 1 n — 2 + C n n — 1 · 5 · 1 n — 1 + C n n · 1 n ) + + 10 n + 14 = = 5 n + C n 1 · 5 n — 1 · 1 + ⋯ + C n n — 2 · 5 2 + n · 5 + 1 + + 10 n + 14 = = 5 n + C n 1 · 5 n — 1 · 1 + ⋯ + C n n — 2 · 5 2 + 15 n + 15 = = 5 · 5 n — 1 + C n 1 · 5 n — 2 + … + C n n — 2 · 5 1 + 3 n + 3

Здесь также применимо решение, основанное на использовании формулы бинома Ньютона. Благодаря биному Ньютона мы можем представить подобные выражения как произведение. А дальше, основываясь на свойстве делимости, мы можем утверждать, что если хотя бы один из множителей делится на 5 , то и все произведение делится на 5 .

Основываясь на свойстве делимости, мы можем утверждать следующее:
если целое число a делится на целое число b , то произведение m · a , где m – любое целое число, делится на b . Применив это свойство к описанной ситуации, получаем: так как число 10 делится на 5 , то и произведение a 1 · 10 тоже делится на 5 .

Мы уже установили, что произведение a 1 · 10 из равенства a = a 1 · 10 + a 0 делится на 5 . Согласно свойству делимости, число a делится на пять при условии, что a 0 делится на 5 . Это возможно при двух значениях a 0 = 0 и a 0 = 5 . В то же время, если a 0 делится на 5 , то и a делится на 5 . Так мы доказали достаточность и необходимость.

Согласно правилу умножения на 10 мы можем представить любое целое число a , в записи которого справа находится 0 , представить как произведение a 1 · 10 . Если в записи числа а справа содержится любая другая цифра a 0 , то a можно записать равенством вида a = a 1 · 10 + a 0 .

Приглашение в мир математики

Математика в 6 классе начинается с изучения понятия делимости и признаков делимости. Часто ограничиваются признаками делимости на такие числа:

  • На 2: последняя цифра должна быть 0, 2, 4, 6 или 8;
  • На 3: сумма цифр числа должна делиться на 3;
  • На 4: число, образованное последними двумя цифрами, должно делиться на 4;
  • На 5: последняя цифра должна быть 0 или 5;
  • На 6: число должно обладать признаками делимости на 2 и на 3;
  • Признак делимости на 7 часто пропускается;
  • Редко таже рассказывают и о признаке делимости на 8, хотя он аналогичен признакам делимости на 2 и на 4. Чтобы число делилось на 8, необходимо и достаточно, чтобы трёхцифреное окончание делилось на 8.
  • Признак делимости на 9 знают все: сумма цифр числа должна делиться на 9. Что, правда, не развивает иммунитет против всяческих трюков с датами, которые используют нумерологи.
  • Признак делимости на 10, наверное, самый простой: число должно оканчиваться нулём.
  • Иногда шестиклассникам рассказывают и о признаке делимости на 11. Нужно цифры числа, стоящие на чётных местах сложить, из результата вычесть цифры, стоящие на нечётных местах. Если результат будет делиться на 11, то и само число делится на 11.

Вернёмся теперь к признаку делимости на 7. Если о нём рассказывают, тот объединяют с признаком делимости на 13 и советуют использовать так.

  • Для14: на 2 и на 7;
  • Для 15: на 3 и на 5;
  • Для 18: на 2 и на 9;
  • Для 21: на 3 и на 7;
  • Для 20: на 4 и на 5 (или, по-другому, последняя цифра должна быть нулём, а предпоследняя — чётной);
  • Для 24: на 3 и на 8;
  • Для 26: на 2 и на 13;
  • Для 28: на 4 и на 7.

Усовершенствованный признак делимости на 16.
Вместо того, чтобы проверять, делится ли 4-циферное окончание числа на 16, можно сложить цифру единиц с увеличенной в 10 раз цифрой десятков, с учетверённой цифрой сотен и с
увеличенной в восемь раз цифрой тысяч, и проверить, делится ли результат на 16.

Признак делимости на 12 — это объединение признаков делимсоти на 3 и на 4. Это же работает и для любых n, являющихся произведением взаимнопростых p и q. Чтобы число делилось на n (которое равно произведению pq,актих, что НОД(p,q)=1), одно должно делиться одновремено на p и на q.

При определении делимости на 27 часто, по аналогии с признаками делимости на меньшие степени тройки, пытаются рассматривать сумму цифр числа. Однако, тут немного сложнее. Можно, конечно, разбить число на блоки по 3 цифры и сложить их все. если результат будет делиться на 27, то и само число будет делиться на 27.

Вам будет интересно ==>  Прожиточный минимум 2023 для детских в ярцеве

  • Это значит, что произведение будет чётным числом, оканчивающимся на 0.
  • Кроме того, сумма цифр этого числа будет делиться на 3 и 9, согласно признаку делимости чисел на 3 и на 9.
  • Отметим, что не все числа, делящиеся на 3, делятся и на 9, но все числа делящиеся на 9 точно делятся на 3. Так что для нас важно, что установить, что произведение будет точно делиться на 9.
  • В числе 285 сумма цифр равна 2 + 8 + 5 = 15 — делиться на 3. Значит и само число должно делиться на 3. Действительно, 285 : 3 = 95 — число делится на 3 нацело.
  • В числе 460 сумма цифр равна 4 + 6 + 0 = 10 — не делится на 3. Значит и само число не должно делиться на 3. Действительно, 460 : 3 = 153 (ост. 1).
  1. 1 275 — число 3, так как 1 275 + 3 = 1 278 — делится на 9;
  2. 3 333 — число 6, так как 3 333 + 6 = 3 339 — делится на 9;
  3. 25 718 — число 4, так как 25 718 + 4 = 25 722 — делится на 9;
  4. 987 652 — число 8, так как 987 652 + 8 = 987 660 — делится на 9;
  5. 10 203 040 — число 8, так как 10 203 040 + 8 = 10 203 048 — делится на 9;
  6. 19 191 919 191 — число 3, так как 19 191 919 191 + 3 = 19 191 919 194 — делится на 9.
  • Чтобы число делилось нацело на 9, надо чтобы сумма его цифр делилась на 9.
  • Мы знаем, что в числе 3 * 4* уже есть цифры 3 и 4. Сумма этих цифр равна 3 + 4 = 7.
  • Значит сумма оставшихся цифр может быть равна 2 либо 11.
  • Подойдут следующие варианты:
    • 3 042, 3 141, 3 240 — в которых сумма дописанных цифр равна 2, а общая сумма чисел равна 9;
    • 3 249, 3 348, 3 447, 3 546, 3 645, 3 744, 3 843, 3 942 — в которых сумма дописанных цифр равна 11, а их общая сумма равна 18.

95. Рома и Дима записывают девятнадцатизначное число, используя только цифры 1, 2 и 4. Первую цифру пишет Рома, вторую — Дима, третью — снова Рома и так далее по очереди. Рома хочет получить в результате число, кратное 3. Может ли Дима помешать ему это сделать?

Признак делимости на 2, 5, 10

Наиболее простым и очевидным является признак делимости на 2 — на 2 без остатка делятся все четные числа. В свою очередь, все числа, заканчивающиеся на четную цифру (0, 2, 4, 6, 8) являются четными. Таким образом, если число оканчивается на 0, 2, 4, 6, 8 — оно без остатка делится на 2.

  • 4800039 не делится без остатка на 6, т.к., это нечетное число;
  • 4800040 не делится без остатка на 6, т.к., сумма цифр числа =16, а 16 не делится на 3 без остатка;
  • 4800042 делится без остатка на 6, т.к., число четное и сумма цифр числа =18, и 18 делится нацело на 3.
  • 588 делится без остатка на 4, т.к. 88 делится на 4 без остатка;
  • 489022 не делится без остатка на 4, т.к., 22 не делится без остатка на 4;
  • 9909080 делится без остатка на 4, т.к. 80 делится без остатка на 4;
  • 344503043 не делится без остатка на 4, т.к., это нечетное число.

Чтобы узнать, делится ли число на 7 нацело, следует многозначное число разбить на две части, отделив три его последние цифры. Из получившихся двух чисел следует от большего отнять меньшее, если полученная разность будет нацело делиться на 7, то и само исходное число будет делиться без остатка на 7.

  • Признак делимости на 2:если запись натурального числа оканчивается четной цифрой, то это число делится без остатка на 2, а если нечетной цифрой, то число без остатка не делится на 2. Короче говоря, четное число делится на 2, нечетное не делится на 2.
  • Признак делимости на 3: если сумма цифр числа делится на 3, то и число делится на 3. Если сумма цифр не делится на 3, то и число не делится на 3. Примеры: а)276 делится на 3, так как 2 + 7 + 6 = 15, а 15 делится на 3; б)563 не делится на 3, так как 5 + 6 + 3 = 14, а 14 не делится на 3.
  • Признак делимости на 4: число делится на 4, если оканчивается на 00, или число, составленное из двух последних цифр данного числа, делится на 4. Примеры: а)78 536 делится на 4, так как 36 делится на 4; б)8422 не делится на 4, так как 22 не делится на 4.
  • Признак делимости на 5: если запись натурального числа оканчивается цифрами 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.а)370 и 1485 делятся без остатка на 5; б)числа 537 и 4008 без остатка на 5 не делятся.
  • Признак делимости на 6: число делится на 6, если оно делится одновременно на 2 и на 3. В противном случае оно на 6 не делится. Примеры: а)2862 делится на 6, так как 2862 делится и на 2, и на 3; б)3754 не делится на 6, так как 3754 не делится на 3
  • Признак делимости на 8: число делится на 8, если оканчивается на 000, или число, составленное из трех последних цифр данного числа, делится на 4. Примеры: а)78 000 делится на 0, так как оканчивается на 000; б)8422 не делится на 8, так как 422 не делится на 8.
  • Признак делимости на 9: если сумма цифр числа делится на 9, то и само число делится на 9. Если сумма цифр числа не делится на 9, то и число не делится на 9. Примеры: а)5787 делится на 9, так как 5 + 7 + 8 + 7= 27, а 27 делится на 9; б)359 не делится на 9, так как 3 + 5 + 9 = 17, а 17 не делится на 9.
  • Признак делимости на 10: если запись натурального числа оканчивается цифрой 0, то это число делится без остатка на 10. Если запись натурального числа оканчивается другой цифрой, то оно не делится без остатка на 10. Примеры: а)680 делится на 10; б)104 не делится на 10 без остатка.

Легко заметить, что в первых трёх строках полное соответствие с математикой и лишь последняя строка отличается. Тут нужно вспомнить, что на самом деле 0 – это ложь, а 1 – это истина. Последняя строка звучит: «Истина или истина – это истина». И это первое, что нужно запомнить.

Логическая операция ДИЗЪЮНКЦИЯ – это то же самое (почти), что и математическое сложение. В нашей обыденной жизни этой логической операции соответствует слово ИЛИ. Эту операцию для упрощения называют «логическое сложение» и даже обозначают знаком «+». Когда-то вы знакомились с таблицей сложения от 1 до 10. У нас всё проще, так как есть только 0 и 1 (ложь и истина).

Для успешного решения задачи на эту тему, достаточно знать три логические операции. Две из них можно сравнить с обыкновенными математическими операциями – сложением и умножением. С ними ни у кого не возникает проблем. Так что и с логическими операциями справимся.

Логическая операция КОНЪЮНКЦИЯ – это то же самое, что и математическое умножение. В нашей обыденной жизни этой логической операции соответствует слово И. Эту операцию для упрощения называют «логическое умножение» и даже обозначают знаком «∙». Когда-то вы знакомились с таблицей умножения от 1 до 10. У нас всё проще, так как есть только 0 и 1 (ложь и истина).

Adblock
detector